Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Major- and trace-element data together with Nd and Sr isotopic compositions and 40Ar/39Ar age determinations were obtained for Late Cretaceous and younger volcanic rocks from north-central Colorado, USA, in the Southern Rocky Mountains to assess the sources of mantle-derived melts in a region underlain by thick (≥150 km) continental lithosphere. Trachybasalt to trachyandesite lava flows and volcanic cobbles of the Upper Cretaceous Windy Gap Volcanic Member of the Middle Park Formation have low εNd(t) values from −3.4 to −13, 87Sr/86Sr(t) from ~0.705 to ~0.707, high large ion lithophile element/high field strength element ratios, and low Ta/Th (≤0.2) values. These characteristics are consistent with the production of mafic melts during the Late Cretaceous to early Cenozoic Laramide orogeny through flux melting of asthenosphere above shallowly subducting and dehydrating oceanic lithosphere of the Farallon plate, followed by the interaction of these melts with preexisting, low εNd(t), continental lithospheric mantle during ascent. This scenario requires that asthenospheric melting occurred beneath continental lithosphere as thick as 200 km, in accordance with mantle xenoliths entrained in localized Devonian-age kimberlites. Such depths are consistent with the abundances of heavy rare earth elements (Yb, Sc) in the Laramide volcanic rocks, which require parental melts derived from garnet-bearing mantle source rocks. New 40Ar/39Ar ages from the Rabbit Ears and Elkhead Mountains volcanic fields confirm that mafic magmatism was reestablished in this region ca. 28 Ma after a hiatus of over 30 m.y. and that the locus of volcanism migrated to the west through time. These rocks have εNd(t) and 87Sr/86Sr(t) values equivalent to their older counterparts (−3.5 to −13 and 0.7038–0.7060, respectively), but they have higher average chondrite-normalized La/Yb values (~22 vs. ~10), and, for the Rabbit Ears volcanic field, higher and more variable Ta/Th values (0.29–0.43). The latter are general characteristics of all other post–40 Ma volcanic rocks in north-central Colorado for which literature data are available. Transitions from low to intermediate Ta/Th mafic volcanism occurred diachronously across southwest North America and are interpreted to have been a consequence of melting of continental lithospheric mantle previously metasomatized by aqueous fluids derived from the underthrusted Farallon plate. Melting occurred as remnants of the Farallon plate were removed and the continental lithospheric mantle was conductively heated by upwelling asthenosphere. A similar model can be applied to post–40 Ma magmatism in north-central Colorado, with periodic, east to west, removal of stranded remnants of the Farallon plate from the base of the continental lithospheric mantle accounting for the production, and western migration, of volcanism. The estimated depth of the lithosphere-asthenosphere boundary in north-central Colorado (~150 km) indicates that the lithosphere remains too thick to allow widespread melting of upwelling asthenosphere even after lithospheric thinning in the Cenozoic. The preservation of thick continental lithospheric mantle may account for the absence of oceanic-island basalt–like basaltic volcanism (high Ta/Th values of ~1 and εNd[t] > 0), in contrast to areas of southwest North America that experienced larger-magnitude extension and lithosphere thinning, where oceanic-island basalt–like late Cenozoic basalts are common.more » « less
-
Abstract We report the formation of minerals from the tochilinite-valleriite group (TVG) during laboratory serpentinization experiments conducted at 300 and 328 °C. Minerals in the TVG are composed of a mixture of sulfide and hydroxide layers that can contain variable proportions of Fe, Mg, Cu, Ni, and other cations in both layers. Members of this group have been observed as accessory minerals in several serpentinites, and have also been observed in association with serpentine minerals in meteorites. To our knowledge, however, TVG minerals have not previously been identified as reaction products during laboratory simulation of serpentinization. The serpentinization experiments reacted olivine with artificial seawater containing 34S-labeled sulfate, with a small amount of solid FeS also added to the 300 °C experiment. In both experiments, the predominant reaction products were chrysotile serpentine, brucite, and magnetite. At 300 °C, these major products were accompanied by trace amounts of the Ni-bearing TVG member haapalaite, Ni,Fe-sulfide (likely pentlandite), and anhydrite. At 328 °C, valleriite occurs rather than haapalaite and the accompanying Ni,Fe-sulfide is proportionally more enriched in Ni. Reduction of sulfate by H2 produced during serpentinization evidently provided a source of reduced S that contributed to formation of the TVG minerals and Ni,Fe-sulfides. The results provide new constraints on the conditions that allow precipitation of tochilinite-valleriite group minerals in natural serpentinites.more » « less
-
Abstract Single crystals of Al-free, ferromagnesian jeffbenite up to 200 µm in size have been synthesized at 15 GPa and 1200 °C in a 1200 tonne multi-anvil press from a starting composition in the forsteritefayalite-magnetite-water system. This phase has the approximate formula Mg2.62Fe0.872+Fe1.633+Si2.88O12 and is observed to coexist with a Ca-free clinopyroxene plus what appears to be quenched melt. The crystal structure has been refined from single-crystal X-ray diffraction data and is similar to that determined for natural Al-bearing jeffbenite, Mg3Al2Si3O12, reported from inclusions in superdeep diamonds. The structure is a tetragonal orthosilicate in space group I42d with a = 6.6449(4) Å, c = 18.4823(14) Å, and is structurally more closely related to zircon than to garnet. The T2 site is larger than T1, shares an edge with the M2 octahedron, and incorporates significant Fe3+. Because of the tetrahedral incorporation of trivalent cations, jeffbenite appears to be compositionally distinct from garnet. Previous speculations that the phase may only occur as a retrograde decompression product from bridgmanite are not supported by its direct synthesis under transition zone conditions. The phase has a calculated density of 3.93 g/cm3, which is indistinguishable from a garnet of comparable composition, and is a possible component in the mantle transition zone under oxidizing conditions or with Al-rich compositions.more » « less
-
Abstract AimAs one of the most diverse and economically important families on Earth, ground beetles (Carabidae) are viewed as a key barometer of climate change. Recent meta‐analyses provide equivocal evidence on abundance changes of terrestrial insects. Generalizations from traits (e.g., body size, diets, flights) provide insights into understanding community responses, but syntheses for the diverse Carabidae have not yet emerged. We aim to determine how habitat and trait syndromes mediate risks from contemporary and future climate change on the Carabidae community. LocationNorth America. Time period2012–2100. Major taxa studiedGround beetles (Carabidae). MethodsWe synthesized the abundance and trait data for 136 species from the National Ecological Observatory Network (NEON) and additional raw data from studies across North America with remotely sensed habitat characteristics in a generalized joint attribute model. Combined Light Detection and RAnging (LiDAR) and hyperspectral imagery were used to derive habitat at a continental scale. We evaluated climate risks on the joint response of species and traits by expanding climate velocity to response velocity given habitat change. ResultsHabitat contributes more variations in species abundance and community‐weighted mean traits compared to climate. Across North America, grassland fliers benefit from open habitats in hot, dry climates. By contrast, large‐bodied, burrowing omnivores prefer warm‐wet climates beneath closed canopies. Species‐specific abundance changes predicted by the fitted model under future shared socioeconomic pathways (SSP) scenarios are controlled by climate interactions with habitat heterogeneity. For example, the mid‐size, non‐flier is projected to decline across much of the continent, but the magnitudes of declines are reduced or even reversed where canopies are open. Conversely, temperature dominates the response of the small, frequent flierAgonoleptus conjunctus, causing projected change to be more closely linked to regional temperature changes. Main conclusionsCarabidae community reorganization under climate change is being governed by climate–habitat interactions (CHI). Species‐specific responses to CHI are explained by trait syndromes. The fact that habitat mediates warming impacts has immediate application to critical habitat designation for carabid conservation.more » « less
An official website of the United States government
